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The autocorrelation function of volatility in financial time series is fitted well by a superposition of several
exponents. This case admits an explicit analytical solution of the problem of constructing the best linear
forecast of a stationary stochastic process. We describe and apply the proposed analytical method for forecast-
ing volatility. The leverage effect and volatility clustering are taken into account. Parameters of the predictor
function are determined numerically for the Dow Jones 30 Industrial Average. Connection of the proposed
method to the popular autoregressive conditional heteroskedasticity models is discussed.
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I. INTRODUCTION

The methods developed in studying complex physical
systems have been successfully applied for decades to ana-
lyze financial data[1–3]. The quantitative study of financial
data continues to attract growing interest motivated by the
existence of universal features in the dynamics of different
markets, such as power-law tails of the return distributions
[4–11], scaling as a first approximation[3], deviations from
scaling of the empirical return distributions[5,8,12], volatil-
ity clustering [12,13], and the leverage effect[14–16,24].
Phenomenological and microscopic models[8–11,19–22]
have been proposed to explain the established conventional
facts. The field of research connected to modeling financial
markets has been named econophysics.

A stock’s volatility represents the simplest measure of its
riskiness or uncertainty. Formally, the volatility is the annu-
alized standard deviation of the stock’s returns during the
period of interest. The random walk model proposed by
Bachelier in 1900[1] presupposes a constant volatility. There
is ample empirical evidence, however, that the volatility is
not a constant, but represents a random variable. Two well
established “stylized” facts concerning the volatility are long
ranged volatility-volatility correlations, which are also
known as volatility clustering[13], and return-volatility cor-
relations, which are also known as the leverage effect
[14,15].

The volatility is a key variable for controlling risk mea-
sures associated with the dynamics of prices of financial as-
sets. The implied volatility extracted from options prices rep-
resents a market estimate of future volatility. Pure exposure
to future volatility is provided by volatility swaps[17,18].
The volatility enters all options pricing models, so its knowl-
edge has great value for estimating the price distributions of
the equilibrium options state.

Volatility clustering manifests itself in the occurrence of
large changes of the index at neighboring times(observed
localized outbursts). The leverage effect has its origin in the
observed negative correlation between past returns and fu-
ture volatility. A possible explanation of this effect[14–16] is
due to the fact that negative returns increase financial lever-
age and extend the risk for investors and thereby a stock’s

volatility. A statistical study[23,24] demonstrated clearly
that the leverage effect is one directional: past returns corre-
late with future volatility only.

In this paper, we propose an analytical method to evaluate
future volatility as a linear function of the lagged volatility
and lagged returns. The method takes volatility clustering
and the leverage effect into account and provides for station-
ary stochastic processes the smallest forecasting error in the
class of all linear functions. In this precise sense, we talk
about the best linear forecast(BLF) of the volatility.

The BLF problem for a stationary stochastic process was
formulated and solved by Kolmogorov[25] in 1941 and by
Wiener[26] in 1949. A modern review of BLF methods can
be found in Ref.[27]. We apply these methods to construct
the BLF volatility function for the Dow Jones 30 Industrial
Average(DJIA).

The outline of the paper is as follows. In the next section,
we remove the leverage effect from the original time series
to work with a reduced volatilityxstd that has by definition a
vanishing covariance with past returns. The spectral density
of a stochastic process can be factorized,fsvd= uwsvdu2, if its
correlation function represents a superposition of exponential
functions. An explicit expression is derived for the amplitude
wsvd. The analytical properties of the amplitudewsvd in the
complexv plane are important to provide an explicit repre-
sentation of the predictor function. In Sec. III, the BLF prob-
lem is analyzed further to account for reduced volatility clus-
tering and to construct the BLF function. In Sec. IV, we fit
more than 100 years of data of the daily historical volatility
of the DJIA in order to determine the parameters of the BLF
function. Numerical estimates are given to illustrate the
method developed. The minimization of the forecasting error
for the reduced volatility predictor function is shown to be
equivalent to the minimization of the forecasting error of the
original volatility time series. An explicit expression for the
forecasting error is given. In the Conclusion, a connection of
the BLF method with the autoregressive conditinal heterosk-
edasticity(ARCH) models[28–33], in which future variance
is also represented as a linear combination of past observ-
ables, is discussed.
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II. FACTORIZATION OF SPECTRAL DENSITY

The evolution of a market index value or a stock price
Sstd is described by the equation(see, e.g.,[34])

dSstd
Sstd

= mdt + dcstd. s1d

The valuedcstd is a noise added to the path followed bySstd,
with the expectation valueEfdcstdg=0 and the variance
varfdcstdg=sstd2dt. The volatility sstd represents a generic
measure of the magnitude of market fluctuations. We con-
sider a discrete version of the random walk problem by
setting dt=1, dcstd=jstd, and dSstd=Sstd−Sst−1d. The
sampling intervals are enumerated by the integer time
parametert.

The volatility sstd is a hidden variable and its extraction
form the market observables is a separate difficult task. A
possible estimatorhstd= ujstdu of the volatility is defined in
terms of returns,

jstd = sSstd − Sst − 1ddSstd−1 − m. s2d

In what follows, the term “volatility” refers to the estimator
hstd= ujstdu; the annualizing factor will not apply. Use of the
variance estimatorvstd= ujstdu2 would complexify the prob-
lem due to divergences connected to the existence of power-
law tails (the “variance of a variance” is infinite, varfj2g
=`, sincedFsjd,dj /j4 at j@1; see, e.g.,[7]). At large time
scales, different estimators are expected to be close to vola-
tility sstd and to each other. The problem of the efficiency of
the volatility estimators is postponed for other studies.

It is usually assumed that financial time series constitute
stationary stochastic processes, the autocorrelation functions
of which depend on the relative time only. The stock evolu-
tion problem is assumed therefore to be invariant with re-
spect to time translations.

First, we remove from the time serieshstd the leverage
effect using the variablexstd:

xstd = hstd − o
s

covfhs0d,js− sdgvar−1fjgjst − sd. s3d

The decomposition (3) has predictive power, since
covfhstd ,jst−sdg,ussd, soxstd depends on the lagged price
increments only. Note thatEfhg=Efxg, sinceEfjg=0. Due to
the definition(3) and by virtue of the equation

covfjstd,jssdg = dtsvarfjg, s4d

which holds true for sampling intervals greater than 20 min
[7,12], we have

covfxstd,jssdg = 0. s5d

The reduced volatilityxstd does not experience the leverage
effect. So its predictor depends on the pastxstd only. It is
possible therefore to focus on volatility clustering only, while
the leverage effect is taken into account explicitly through
Eq. (3).

The autocorrelation functionBstd=covfxstd ,xs0dg /Efx2g
of a stationary stochastic processxstd can be fitted in many
cases by a superposition of exponents

Bstd = o
i=1

n

die
−aiutu. s6d

The best linear forecast of the observablexstd in such a case
simplifies substantially. The casen=1 is discussed in Ref.
[27]. We provide a solution of the BLF problem for arbitrary
values ofn.

The spectral densityfsvd of the stochastic processxstd is
given by the Fourier transform of the correlation coefficient
(6):

fsvd = o
t=−`

+`

e−ivtBstd = o
i=1

n

di
1 − e−2ai

s1 − e−aiuds1 − e−ai/ud
, s7d

whereu=exps−ivd. The functionfsvd can be represented in
the form

fsvd = Pn−1sfdFp
i=1

n

s1 − e−aiudS1 − e−ai
1

u
DG−1

, s8d

wheref=s1/2dsu+1/ud and

Pn−1sfd = 2n expS− o
i=1

n

aiDo
i=1

n

di sinhsaidp
kÞi

n

fcoshsaid − fg

= Dn2
n−1 expS− o

i=1

n−1

niDp
i=1

n−1

fcoshsnid − fg. s9d

The amplitudewsud such thatfsvd=wsudwsud* can be cho-
sen to be analytical, rational, and regular atuuu,1:

wsud = Dn
1/2p

i=1

n−1

s1 − e−niudSp
i=1

n

s1 − e−aiudD−1

. s10d

The additive representation

wsud = o
i=1

n

ci
1

1 − biu
s11d

is completely equivalent to the multiplicative representation
(10). Here,bi =e−ai and

Dn = 2 expS− o
i=1

n

ai + o
i=1

n−1

niDo
i=1

n

di sinhsaid,

ci = Dn
1/2p

k=1

n−1

se−ai − e−nkdSp
kÞi

n

se−ai − e−akdD−1

,

coshsnid = f0
i , s12d

where f0
i are n−1 roots of one equationPn−1sf0

i d=0. For
n=1, c1=d1

1/2Î1−b1
2. Analytical solutions forni exist up to

n=5.
Knowledge of the Fourier transform of the autocorrelation

function is not sufficient for a complete reconstruction of the
Fourier transform of the stochastic processxstd. If the auto-
correlation function represents a superposition of the expo-
nents (6), the problem admits a solutionwsud, such that
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fsud= uwsudu2, in the class of rational functions. If we require
further that the functionwsud be regular atuuuø1, an unam-
biguous solutionwsud can be provided. This solution coin-
cides with the Fourier transform of the time seriesxstd up to
a phase factor. It is remarkable that we need not know the
phase, since all the relevant information is contained in the
spectral densityfsvd. The BLF problem then simplifies con-
siderably due to the special analytical properties of the func-
tion wsud.

III. BLF FUNCTION

The correlation function corresponding to the spectral
density(7) can be found from the inverse Fourier transform.
In the case of Eq.(10), we consider firstt.0:

Bstd =E
−p

p

eivtwsvdws− vd
dv

2p
= −E

Cr

1

ut+1wsudwS1

u
D du

2pi
,

s13d

whereCr =he−iv ,v=−p¯pj. The poles ofwsud are located
at uuuùR=minheaij, while the poles ofws1/ud are located at
uuuø1/R. We move the contourCr to infinity and get

Bstd = o
i=1

n

o
k=1

n

bi
utu cick

1 − bibk
. s14d

Comparison with Eq.(6) gives

di = o
k=1

n
cick

1 − bibk
. s15d

The same result(14) comes out att,0. For n=1, Bstd
=b1

utuc1
2/ s1−b1

2d.
A stochastic processxstd can be represented as a linear

combination of a normally distributed uncorrelated sequence
zstd,Ns0,sxd with sx

2=Efx2g,

xstd = Efxg + o
s=0

+`

Cssdzst − sd, s16d

provided that the spectral function admits the factorization
and the amplitudewsud is regular atuuu=1,R (see, e.g.,
[27]). The expansion coefficients equal

Cstd = o
i=1

n

cibi
t. s17d

It is remarkable that only retardedzssd enter the summation
in Eq. (16). This is a consequence of the convergence of the
Taylor expansion of the amplitudewsud at uuu=1, which is in
turn a consequence of the analyticity atuuu,R: The conver-
gence radius of the expansion is associated with the first pole
at uu1u=R. The stationary stochastic processxstd can be in-
terpreted as a result of filtering the normal sequencezstd.

The BLF function for the time horizont has the form[27]

x̂tstd = Efxg + o
s=t

+`
Jts0dssd

s!
hxst − sd − Efxgj. s18d

The weight coefficientsJts0dssd are derivatives of the func-
tion Jtsud=wtsud /wsud at u=0. Here,

wtsud = o
s=t

+`

Cstdus = o
i=1

n

cisbiudt 1

1 − biu
.

For constructing a linear prognosis function, the overall nor-
malization factor inBstd is not important, since it drops out
from the ratiowtsud /wsud. In virtue of Eq.(5),

covfx̂tstd,jssdg = 0. s19d

In terms of the stochastic processzstd, the BLF function
looks like

x̂tstd = Efxg + o
s=t

+`

Cssdzst − sd. s20d

At s=t we obtain

Jts0dstd

t!
=

o
i=1

n

cie
−ait

o
i=1

n

ci

, s21d

and atl =s−t.0

Jts0dssd

s!
= Dn

−1/2o
j=1

n−1

e−n jsl−1dSp
iÞ j

n−1

se−n j − e−nidD−1

3o
i=1

n

cie
−aitp

kÞi

n

se−n j − e−akd. s22d

The last two equations complete the solution of the BLF
problem for the case when the correlation function is a su-
perposition of the exponent functions(6). Thensn−1d terms
in the right side of Eq.(22) are not all positive definite.

IV. PARAMETERS OF BLF VOLATILITY FUNCTION FOR
DOW JONES 30 INDUSTRIAL AVERAGE

Let us apply the BLF method to forecasting the volatility
for the DJIA. The daily returns are defined by Eq.(2) where
Sstd are the DJIA index close values, the volatility equals
hstd= ujstdu, andxstd is defined by Eq.(3). In Fig. 1, we show
the empirical values of the correlation coefficients
corrfhstd ,hs0dg, corrfhstd ,js0dg and corrfxstd ,xs0dg,
corrfxstd ,js0dg and the exponential fit of the correlation co-
efficient corrfxstd ,xs0dg versus the time lagt. Let us recall
that corrfA,Bg=varfA,Bg /ÎEfA2gEfB2g and −1øcorrfA,Bg
ø1. To calculatexstd, we run the summation overs in Eq.
(3) from 0 to 250 and use the empirical correlation function
of hstd and jssd without additional smearing. Up tot=250,
the correlation coefficient corrfxstd ,js0dg is less noisy as
compared with other correlators. The parametersdi and ai
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are listed in Table I. The equationP3sfd=0 determines the
parametersni si =1,2,3d according to Eq.(9). Using Eqs.
(12), we find the values ofD4 and ci, which we also show
in Table I. One can check that Eq.(15) is satisfied. The
correlation coefficient corrfxstd ,xs0dg drops from
0.53s=oi=1

4 did to 0.13s=oi=2
4 did when t changes by one unit

from t=0 to t=1. The value ofa1 is therefore large and can
be fixed by considering high-frequency data only. The results
shown on Fig. 1 and in Table I and II are obtained for
a1=+`. The values of 1/ai for i =2,3,4 areequal to about
one month, one year, and four calendar years, respectively.

The average fitting error 13.6% can be compared to the
average noise of 11.1% in the DJIA index. The latter is esti-
mated as the variance ofxstd−fxst−1d+xst+1dg /2. The
quality of fit presented in Fig. 1 is therefore reasonable.

The weight coefficientsJts0dssd can be found with the use
of Eq. (21) at s=t and Eq.(22) at s.t. We show values of

the weight coefficients divided bys! in Table II for l =s−t
=0, 1, 2, and 10 andt=1, 2, 10, and 100.

The BLF volatility function looks like

ĥtstd = Efxg + o
s=t

+`
Jts0dssd

s!
hxst − sd − Efxgj

+ o
s=t

+`

covfhs0d,js− sdgvar−1fjgjst − sd s23d

where the unknown future returns are set equal to zero:
jst−sd→Efjst−sdg=0 for 0øs,t.

Using Eqs.(4), (5), and(19), one gets

Efhĥtstd − hstdj2g = Efhx̂tstd − xstdj2g

+ o
s=0

t−1

covfhs0d,js− sdg2var−1fjg,

s24d

so the minimization of thex̂tstd error according to Eq.(18) is
equivalent to the minimization of theĥtstd error. Using de-
compositions(16) and (20), the x̂tstd error can be evaluated
as

Efhx̂tstd − xstdj2g = Efx2go
s=0

t−1

C2ssd

= Efx2go
i=1

n

o
k=1

n

cick
1 − e−sai+akdt

1 − e−sai+akd . s25d

[There is a misprint in Eq.(10.2) of Ref. [27].] At t→+`,
Efhx̂tstd−xstdj2g→Efx2goi=1

n di =varfxg, in agreement with
the fact thatx̂tstd→Efxg. Arguments of this kind do not
apply to the variance estimatorvstd= ujstdu2, since varfvg=`
due to the power-law tails of the return distributions[7].

Nonlinear models for volatility forecasting[19,20], which
take into account, in addition to the volatility clustering and
leverage effect, also the heavy tails of the return distributions
and the approximate scaling, represent an alternative class of
stochastic volatility models. The efficiency of such models
can be tested in general using Monte Carlo simulations
and/or back tests over historical data. The approach of Refs.
[19,20] is more general, since it allows a calculation of the
probability density function of the volatility. The BLF
method predicts the average volatility only. It can, however,

FIG. 1. Empirical correlation coefficients corrfhstd ,hs0dg,
corrfhstd ,js0dg and corrfxstd ,xs0dg, corrfxstd ,js0dg versus the
number of trading dayst of the Dow Jones 30 Industrial Average.
The reduced volatilityxstd is defined through Eq.(3). The correla-
tion coefficients are calculated using more than 100 years of the
daily quotes, starting on 26 May 1896 and ending on 31 December
1999 (i.e., a total of 28 507 trading days). The values of
corrfhstd ,hs0dg and corrfhstd ,js0dg are denoted, respectively, by
triangles and diamonds. The values of corrfxstd ,xs0dg and
corrfxstd ,js0dg are denoted by circles and boxes. The solid curve is
the exponential fit(6) with parameters given in Table I. It is seen
that corrfxstd ,js0dg<0. The leverage effect is thus removed from
xstd.

TABLE I. Parametersdi and ai entering the fit of the autocor-
relation function(6) of the reduced volatility, parametersni which
determine the roots of equationPn−1sf0d=0, and parametersci

which determine the additive representation(11) of the function
wsud. The value ofD4 represents the normalization constant accord-
ing to Eq.(12).

d1 0.40 a1 +` n1 0.002257 c1 0.606241

d2 0.05 a2 1/20 n2 0.012107 c2 0.038233

d3 0.03 a3 1/250 n3 0.125302 c3 0.007857

d4 0.05 a4 1/1000 D4 0.435341 c4 0.007473

TABLE II. The weight coefficients(21) and (22) of the BLF
function for some values of the parametersl and t. Here,t is the
forecast horizon andl =s−t is the number of trading days entering
the predictor function starting from the most recent day.

l t=1 t=2 t=10 t=100

0 0.07830 0.07555 0.05780 0.01862

1 0.06942 0.06702 0.05150 0.01710

2 0.06158 0.05949 0.04594 0.01575

10 0.02432 0.02366 0.01941 0.00916
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be extended to forecastingujua for arbitrary 0,a such that
Efuju2ag,`. If all momentsEfujuag of the future distribution
are known, the reconstruction of the probability density func-
tion of the volatility must be possible within the BLF method
also.

The high-frequency data have a pronounced intraday
structure. At the opening, European markets have a huge
volatility, close to the opening of the USA markets and
slightly prior to it. The volatility correlators have oscillating
components at an intraday scale. These oscillations are seen
also in the Fourier spectrum of the volatility, with several
pronounced harmonics. The proposed method cannot be ap-
plied without modifications to the intraday data, since oscil-
lations cannot be fitted by a superposition of exponential
functions.

The hypothesis of a stationary character of the DJIA index
volatility, if tested rigorously against all alternatives, should
take into account the long-ranged correlations, as a result of
which the elements of financial time series cannot be treated
as independent. If correlations are nonetheless neglected, the
estimates of the DJIA volatility over different few-year inter-
vals give scattered results with variations significantly above
the statistically allowed level for a Gaussian random walk.
We have, however, not observed using this simplified method
any obvious trend for the DJIA volatility over the last more
than 100 years.

V. CONCLUSION

The BLF problem for a stationary stochastic process was
formulated in 1941 by Kolmogorov[25] and later by Wiener
[26]. A modern review of BLF methods can be found in Ref.

[27]. In this paper, we reported an explicit analytical solution
of the BLF problem for the practically important case when
the autocorrelation function represents a superposition of ex-
ponential functions. The autocorrelation function of the vola-
tility in a financial time series is known to be fitted well by
such a superposition. We applied the results obtained to con-
struct the BLF volatility function for the DJIA.

The popular autoregressive conditional heteroskedasticity
models of time dependent volatility, proposed by Engle[28]
(for a review, see[29–33]), describe the variancesstd2 as a
linear function of the past observables. The ARCH models
are conceptually very close to the BLF approach. Equation
(23) expresses the forecasting volatility also as a linear func-
tion of the past volatility and past returns. Equation(23)
gives, however, the best linear forecast with the proved
smallest forecasting error(25). The weight coefficients
Jts0dssd allow one to evaluate the magnitude and number of
terms needed for the ARCH models to quantify future vari-
ance with sufficiently good precision. The ARCH models
receive additional support and a more general framework
through the BLF formula(23).

Accurate estimates of the future volatility are important
for risk management and options pricing. The BLF formula
(23) is interesting as the proved most accurate estimate in the
class of all linear functions of past volatility and past returns.
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