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Best linear forecast of volatility in financial time series
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The autocorrelation function of volatility in financial time series is fitted well by a superposition of several
exponents. This case admits an explicit analytical solution of the problem of constructing the best linear
forecast of a stationary stochastic process. We describe and apply the proposed analytical method for forecast-
ing volatility. The leverage effect and volatility clustering are taken into account. Parameters of the predictor
function are determined numerically for the Dow Jones 30 Industrial Average. Connection of the proposed
method to the popular autoregressive conditional heteroskedasticity models is discussed.
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I. INTRODUCTION volatility. A statistical study[23,24 demonstrated clearly

The methods developed in studying complex physicafhat the leverage effect is one directional: past returns corre-
systems have been successfully applied for decades to arigte with future volatility only.
lyze financial datd1-3]. The quantitative study of financial In this paper, we propose an analytical method to evaluate
data continues to attract growing interest motivated by thduture volatility as a linear function of the lagged volatility
existence of universal features in the dynamics of differentand lagged returns. The method takes volatility clustering
markets, such as power-law tails of the return distributionsand the leverage effect into account and provides for station-
[4-11), scaling as a first approximatidB], deviations from  ary stochastic processes the smallest forecasting error in the
scaling of the empirical return distributiof$,8,12, volatil- |35 of all linear functions. In this precise sense, we talk
ity clustering[12,13, and the leverage effel4—16,24. 416yt the best linear foreca®LF) of the volatility.

Phenomenological and microscopic mod¢g-11,19-22 The BLF problem for a stationary stochastic process was

have been proposed to explain the established Convem'onﬂerulated and solved by Kolmogord@5] in 1941 and by

facts. The field of research connected to modeling ﬁnanc'é\lNiener[ZG] in 1949. A modern review of BLF methods can
markets has been named econophysics. ;

A stock’s volatility represents the simplest measure of itsbe found in Ref[27]. We apply these methods to construct

riskiness or uncertainty. Formally, the volatility is the annu-the BLF volatility function for the Dow Jones 30 Industrial
alized standard deviation of the stock’s returns during theAverage(DQIA). . .
period of interest. The random walk model proposed by The outline of the paper is as follows. In_th_e ne?<t secthn,
Bachelier in 19001] presupposes a constant volatility. There W& rémove the leverage effect from the original time series
is ample empirical evidence, however, that the volatility isto work with a reduced volatility(t) that has by definition a
not a constant, but represents a random variable. Two weManishing covariance with past returns. The spectral density
established “stylized” facts concerning the volatility are longOf a stochastic process can be factorizi) =|¢(w)[?, if its
ranged volatility-volatility correlations, which are also correlation function represents a superposition of exponential
known as volatility clustering13], and return-volatility cor-  functions. An explicit expression is derived for the amplitude
relations, which are also known as the leverage effect(w). The analytical properties of the amplitugéw) in the
[14,15. complexw plane are important to provide an explicit repre-

The volatility is a key variable for controlling risk mea- sentation of the predictor function. In Sec. Ill, the BLF prob-
sures associated with the dynamics of prices of financial adem is analyzed further to account for reduced volatility clus-
sets. The implied volatility extracted from options prices rep-tering and to construct the BLF function. In Sec. IV, we fit
resents a market estimate of future volatility. Pure exposurenore than 100 years of data of the daily historical volatility
to future volatility is provided by volatility swap§l7,1§.  of the DJIA in order to determine the parameters of the BLF
The volatility enters all options pricing models, so its knowl- function. Numerical estimates are given to illustrate the
edge has great value for estimating the price distributions ofnethod developed. The minimization of the forecasting error
the equilibrium options state. for the reduced volatility predictor function is shown to be

Volatility clustering manifests itself in the occurrence of equivalent to the minimization of the forecasting error of the
large changes of the index at neighboring tingebserved original volatility time series. An explicit expression for the
localized outbursis The leverage effect has its origin in the forecasting error is given. In the Conclusion, a connection of
observed negative correlation between past returns and filke BLF method with the autoregressive conditinal heterosk-
ture volatility. A possible explanation of this effddt4—-16is  edasticity(ARCH) models[28-33, in which future variance
due to the fact that negative returns increase financial leveis also represented as a linear combination of past observ-
age and extend the risk for investors and thereby a stockables, is discussed.
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Il. FACTORIZATION OF SPECTRAL DENSITY

n
= X —ailt\
The evolution of a market index value or a stock price B(t) zd,e : 6)

S(t) is described by the equatiaeee, e.g.[34])
The best linear forecast of the observap(e) in such a case

dso = pdt+ dyt). (1)  simplifies substantially. The cage=1 is discussed in Ref.
St [27]. We provide a solution of the BLF problem for arbitrary
values ofn.

The valuedy(t) is a noise added to the path followed 8y),

with the expectation valudg[dy(t)]=0 and the variance . . . .
var[d¢(t)]:a?t)2dt The voIatiEitng(]t) represents a generic given by the Fourier transform of the correlation coefficient
' (6):

measure of the magnitude of market fluctuations. We con-

The spectral densitf{w) of the stochastic procesggt) is

sider a discrete version of the random walk problem by e n 1 —g 2

setting dt=1, dy(t)=&t), and dSt)=S(t)-St-1). The flw)= >, e'B(t)=>, d PRy (7)
sampling intervals are enumerated by the integer time L = (1-eu)(l-eu)
parametet. whereu=exp(-iw). The functionf(w) can be represented in

The volatility o(t) is a hidden variable and its extraction the form
form the market observables is a separate difficult task. A

possible estimator(t)=|£&(t)| of the volatility is defined in n N s
terms of returns, f(w) =Pr1(¢h) [ [Ta- e_a‘U)<1 - e"“a)] , (8
i=1
&) =(St)-St-1)StH) ™~ u. (2

where ¢p=(1/2)(u+1/u) and
In what follows, the term “volatility” refers to the estimator
n(t)=|&(t)|; the annualizing factor will not apply. Use of the
variance estimatoo(t)=|&(t)|> would complexify the prob-
:em dq:a tEJhdiverggnces c?cnnecte_d to the exi?te.nce \F@fgg])ower- 1\t
aw tails (the “variance of a variance” is infinite, .

=0, sincedF(&) ~ d&/ & at &> 1; see, e.g[7]). At large time =Dp2"" exp(— > Vi)_ljl [costin) - ¢]. 9
scales, different estimators are expected to be close to vola- .

tility o(t) and to each other. The problem of the efficiency of The amplitudeg(u) such thatf(w)=¢(u)e(u)* can be cho-

Proa(¢p) =2" exp(— > ai)E d; sinh(ay) [ [ [cost{ay) - ¢]

i=1 i=1 k#i

i=1

the volatility estimators is postponed for other studies. sen to be analytical, rational, and regulafuat< 1:
It is usually assumed that financial time series constitute ne1 n .
stationary stochastic processes, the autocorrelation functions _ 12 . .
. o u=D 1-eu l1-e“u . 10
of which depend on the relative time only. The stock evolu- #(w =Dy iljl( ) i:l( ) (10

tion problem is assumed therefore to be invariant with re-

spect to time translations. The additive representation
First, we remove from the time seriegt) the leverage n 1
effect using the variablg(t): o(u) = 2 C (12)
i-1 1-Bu

x(1) = 7(t) = X co 7(0),&- 9 var [¢]&t-9).  (3)

is completely equivalent to the multiplicative representation

The decomposition (3) has predictive power, since (10). Here, ;=€ and

coV (1), &(t—-s)]~ 6(s), so x(t) depends on the lagged price n n-1 n .
increments only. Note tha[ 7]=E[ x], sinceE[£]=0. Due to D,=2exq - 2 o+ 2 v, 2 d; sinn(«),
the definition(3) and by virtue of the equation =1 =1 /1=t

co &(1),£(s)] = Gvar£], (4) o n -1
which holds true for sampling intervals greater than 20 min ¢i=Dn kI:[l(e e g (e-e ),
[7,12], we have

covx(1),&(s)]=0. (5 cosh(u) = ¢, (12

The reduced volatilityy(t) does not experience the leverage where ¢, are n—1 roots of one equatiof,_(¢,)=0. For

effect. So its predictor depends on the pgé) only. It is n=1, Clzdilzv'l—ﬂi- Analytical solutions fory, exist up to

possible therefore to focus on volatility clustering only, while n=5.

the leverage effect is taken into account explicitly through Knowledge of the Fourier transform of the autocorrelation

Eq. (3). function is not sufficient for a complete reconstruction of the
The autocorrelation functioB(t)=coV x(t), x(0)1/E[x?] Fourier transform of the stochastic proceg$). If the auto-

of a stationary stochastic procegg) can be fitted in many correlation function represents a superposition of the expo-

cases by a superposition of exponents nents (6), the problem admits a solutiop(u), such that
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f(u)=|¢(u)|?, in the class of rational functions. If we require 0y 0)®

further that the functiorp(u) be regular atu|<1, an unam- LO=E[x]+ > HT—I{X(t -s) - E[x]}. (18)
biguous solutionp(u) can be provided. This solution coin- s S

cides with the Fourier transform of the time serjgs) up to  The weight coefficient& (0)® are derivatives of the func-
a phase factor. It is remarkable that we need not know th@on = _(u)=¢,(u)/¢(u) atu=0. Here,

phase, since all the relevant information is contained in the

spectral densitf(w). The BLF problem then simplifies con- = ~ 1
siderably due to the special analytical properties of the func- @.(u)= > C(Hus= 21 Gi(Bu) 1-gu
ST 1=

tion ¢(u).
For constructing a linear prognosis function, the overall nor-
IIl. BLF FUNCTION malization factor inB(t) is not important, since it drops out
from the ratiop,(u)/ ¢(u). In virtue of Eq.(5),
The correlation function corresponding to the spectral

density(7) can be found from the inverse Fourier transform. cov x-(1),&(s)]=0. (19
In the case of Eq(10), we consider first>0: In terms of the stochastic proce&&), the BLF function
looks lik
L do 1 1\ du o0ks ke
B)=] €“plw)e(- w)Z— == —meWel —|—, +oo
— T e u u/ 2mi -
f X0 =Elx]+ X C(94(t-9). (20
(13) =7
whereC,={e7® , w=—7--7}. The poles ofp(u) are located At s=7we obtain
at |u|=R=min{e%}, while the poles ofp(1/u) are located at n
|u/<1/R. We move the contout, to infinity and get > ce “”
2,07 2
n n ce A = n , (21)
BO=2 2 Bl (14) ' .
&l 1-a, 26
Comparison with Eq(6) gives and atl=s-7>0
n E (O)(S) n-1 n-1 -1
6=3 (15 = =0 et [T (e-e™)
k=1 1= BiB : i=1 i#]
n n
The game r2esuI(14) comes out att<0. For n=1, B(t) xS e[ (e - e ). (22)
=ﬂ‘1t|01/(1_,31)- i=1 k#i

A stochastic procesg(t) can be represented as a linear
combination of a normally distributed uncorrelated sequenc
{0 ~N(0,0,) with o?=E[x?],

The last two equations complete the solution of the BLF
%roblem for the case when the correlation function is a su-
perposition of the exponent functio®). Then(n-1) terms

+o0 in the right side of Eq(22) are not all positive definite.
x(t) =E[x]+ 2 C(s)4(t-9), (16)
=0 IV. PARAMETERS OF BLF VOLATILITY FUNCTION FOR
provided that the spectral function admits the factorization DOW JONES 30 INDUSTRIAL AVERAGE
and the amplitudep(u) is regular atju/=1<R (see, e.g., Let us apply the BLF method to forecasting the volatility
[27]). The expansion coefficients equal for the DJIA. The daily returns are defined by K#) where

S(t) are the DJIA index close values, the volatility equals
n(t)=|&(t)|, andx(t) is defined by Eq¢3). In Fig. 1, we show
the empirical values of the correlation coefficients
corf7(t), »(0)], corfxn(t),&0)] and  corfx(t),x(0)],
It is remarkable that only retardefs) enter the summation corff x(t),£(0)] and the exponential fit of the correlation co-
in Eq. (16). This is a consequence of the convergence of thefficient corfx(t), x(0)] versus the time lag. Let us recall
Taylor expansion of the amplitudg(u) at|u|=1, which isin  that corfA,B]=valA,B]/E[A?]E[B?] and —1=<cor{A,B]
turn a consequence of the analyticity|at<R: The conver- <1. To calculatey(t), we run the summation ovexin Eq.
gence radius of the expansion is associated with the first pokg) from 0 to 250 and use the empirical correlation function
at |u)=R. The stationary stochastic procegd) can be in-  of 7(t) and &(s) without additional smearing. Up to=250,
terpreted as a result of filtering the normal sequefite the correlation coefficient cdry(t),£(0)] is less noisy as
The BLF function for the time horizon has the forni27] compared with other correlators. The parametbrand ¢;

C(t) = X ¢ (17)
i=1
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0.2 TABLE Il. The weight coefficientg21) and (22) of the BLF
function for some values of the parametémand 7. Here, 7 is the
Ty sy forecast horizon antE=s- 7 is the number of trading days entering
S— the predictor function starting from the most recent day.
0.1
I =1 =2 =10 7=100
0 0.07830 0.07555 0.05780 0.01862
o s 1 0.06942 0.06702 0.05150 0.01710
0.0 2 0.06158 0.05949 0.04594 0.01575
10 0.02432 0.02366 0.01941 0.00916
-0.1 ‘ ‘ ‘ the weight coefficients divided bg! in Table Il for I=s—7
1 At A LiGod =0, 1, 2, and 10 and=1, 2, 10, and 100.

The BLF volatility function looks like

FIG. 1. Empirical correlation coefficients cp#it), 7(0)], o (O)(S)
cor5(t),&0)] and corfx(t),x(0)], corfx(t),&0)] versus the 70 =E[x]+ > —=—{x(t—9) - E[x]}
number of trading days of the Dow Jones 30 Industrial Average. = 9
The reduced volatilityy(t) is defined through Eq3). The correla- .
tion coefficients are calculated using more than 100 years of the 1
daily quotes, starting on 26 May 1896 and ending on 31 December + E co 7(0), &(- s)var [ £]é(t - s) (23
1999 (i.e.,, a total of 28507 trading daysThe values of ST
corf 7(t), n(0)] and corf#(t),&0)] are denoted, respectively, by where the unknown future returns are set equal to zero:
triangles and diamonds. The values of €gft),x(0)] and  &(t-s)—E[&(t—s)]=0 for O<s<r

corf x(t),&0)] are denoted by circles and boxes. The solid curve is Using Egs.(4), (5), and(19), one gets
the exponential fi{6) with parameters given in Table I. It is seen

that corfx(t),£0)]=0. The leverage effect is thus removed from E[{%,(t) = »(1)}*] = E[{x,(t) = x(D)}?]

x(1). —_

are listed in Table I. The equatidPy(¢)=0 determines the + 2, co 7(0), &(- 9 var €],
parametersy; (i=1,2,3 according to Eq(9). Using Egs. =0

(12), we find the values oD, andc;, which we also show (24

in Table I. One can check that E is satisfied. The S N . .
correlation  coefficient co[r;((t),)?(los))] drops from SO the minimization of thg(t) error according to Eq18) is

0-53:Ei4=1di) to 0.13=Ei4=2di) whent changes by one unit equivalgqt to the minimizationAof th@(t) error. Using de-
fromt=0 to t=1. The value ofy, is therefore large and can COMPositiong16) and(20), the x.(t) error can be evaluated
be fixed by considering high-frequency data only. The result&S

shown on Fig. 1 and in Table | and Il are obtained for ~1
ay=+%. The values of 1d; for i=2,3,4 areequal to about E[{5 (1) = (2] = EI2TS C2(s
one month, one year, and four calendar years, respectively. [0 = (O] = Elx % ®

The average fitting error 13.6% can be compared to the 0on
average noise of 11.1% in the DJIA index. The latter is esti- S S
mated as the variance of(t)—[x(t—1)+x(t+1)]/2. The =ElX] CiCk
quality of fit presented in Fig. 1 is therefore reasonable.

The weight coefficient& (0)® can be found with the use [There is a misprint in Eq(10.2) of Ref. [27].] At 7— +,
of Eq. (21) ats=r and Eq.(22) at s> 7. We show values of E[{X.(t) - x()}*] - E[x*]Z{L,di=vafx], in agreement with
the fact thaty,(t) — E[x]. Arguments of this kind do not
apply to the variance estimatoft)=|&(t)|?, since vajw]=

— a(ajtey)T

1
— - (25
S Ll-etlere

TABLE |. Parameterg); and o; entering the fit of the autocor-

relation function(6) of the reduced volatility, parameters which . o
determine the roots of equatioB,,_(bg)=0, and parameters; due to the power-law tails of the return distributiding.

which determine the additive representatidd) of the function Nonlinear models for volatility forecasting.9,2q, which

¢(u). The value oD, represents the normalization constant accord-t@Ke into account, in addition to t_he volatility clust_erir_lg a_nd
ing to Eq.(12). leverage effect, also the heavy tails of the return distributions

and the approximate scaling, represent an alternative class of
stochastic volatility models. The efficiency of such models
d 040 a +oo vy 0.002257 c; 0.606241  can be tested in general using Monte Carlo simulations
d, 0.05 ay 1/20 v, 0.012107 c¢, 0.038233 and/or back tests over historical data. The approach of Refs.
ds 003 a3 1/250 w3 0.125302 c3 0.007857 [19,2Q is more general, since it allows a calculation of the
d, 005 « 1/1000 D, 0435341 c, 0.007473 Probability density function of the volatility. The BLF
method predicts the average volatility only. It can, however,
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be extended to forecastirig|® for arbitrary 0O<a such that [27]. In this paper, we reported an explicit analytical solution
E[|¢1%] <ee. If all momentsE[|¢?] of the future distribution  of the BLF problem for the practically important case when
are known, the reconstruction of the probability density func-the autocorrelation function represents a superposition of ex-
tion of the volatility must be possible within the BLF method Ponential functions. The autocorrelation function of the vola-
also. tility in a financial time series is known to be fitted well by
The high-frequency data have a pronounced intradayuch @ superposition. We applied the results obtained to con-
structure. At the opening, European markets have a hugs"uct the BLF volatility function for the DJIA. .
volatility, close to the opening of the USA markets and The popular autoregressive conditional heteroskedasticity

slightly prior to it. The volatility correlators have oscillating M°dels of time dependent volatility, proposed by Eriglé]

- . - . 2
components at an intraday scale. These oscillations are segﬁr a ;ewet\./v, sei{%ﬁ 33), tdescrlbe gl]e v?_rr;angelz\)(gHas a del
also in the Fourier spectrum of the volatility, with several Inear function of the past observables. 1he Modets

; re conceptually very close to the BLF approach. Equation
pr_onou_nced harm_o_nlcs_. The propqsed method cannot be_a 3) expresses the forecasting volatility also as a linear func-
plied without modifications to the intraday data, since oscil-

) ; . . tion of the past volatility and past returns. Equati(#8)
Lﬁﬁggznzanmt be fitted by a superposition of exponenuagives, however, the best linear forecast with the proved

) i i smallest forecasting erro(25). The weight coefficients
The hypothesis of a stationary character of the DJIA indexz (0)® allow one to evaluate the magnitude and number of
volatility, if tested rigorously against all alternatives, shouldte;mS needed for the ARCH models to quantify future vari-
take into account the long-ranged correlations, as a result gfnce with sufficiently good precision. The ARCH models
which the elements of financial time series cannot be treateﬂaceive additional Support and a more genera' framework
as independent. If correlations are nonetheless neglected, th&ough the BLF formula23).
estimates of the DJIA volatility over different few-year inter-  Accurate estimates of the future volatility are important
vals give scattered results with variations significantly abovefor risk management and options pricing. The BLF formula
the statistically allowed level for a Gaussian random walk.(23) is interesting as the proved most accurate estimate in the
We have, however, not observed using this simplified methodlass of all linear functions of past volatility and past returns.
any obvious trend for the DJIA volatility over the last more
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